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a  b  s  t  r  a  c  t

Pancreatic  cancer  (PC) is  the  fourth  leading  cause  of  cancer  death  in the  United  States,  with  4%  survival,
5  years  after  diagnosis.  Patients  with  pancreatic  cancer  are  usually  diagnosed  at  late  stages,  when  the
disease  is  incurable.  Sensitive  and  more  specific  markers  are  critical  for  supporting  new  prevention,
diagnostic  or  therapeutic  strategies.  Here,  we  report  mass  spectrometry-based  metabolomic  profiling  of
human  pancreas  matched  tumor  and  normal  tissue.  Multivariate  data  analysis  using  two  independent
eywords:
ancreatic cancer
etabolomics

iomarkers
CMS

methods  shows  significant  alterations  in  the  profiles  of  the  tumor  metabolome  as  compared  to the  normal
tissue.  These  findings  offer  an  information-rich  matrix  for  discovering  novel  candidate  biomarkers  with
diagnostic  or  prognostic  potential.

© 2011 Elsevier B.V. All rights reserved.
issue extraction

. Introduction

Pancreas cancer (PC) is the second most frequent gastrointesti-
al (GI) malignancy and has a median survival of less than one year
t the time of diagnosis for 96% of PC patients [1].  Pancreatic ductal
denocarcinoma (PDAC) accounts for 85–95% of pancreatic tumors
2]. A major hurdle towards improving clinical outcome of PC is the
ack of diagnostic biomarkers at early stage of the disease [3].  Given
he high morbidity and mortality rates associated with PC, there
s an urgent need to develop specific, sensitive and cost effective
iomarkers of clinical importance that can help inform treatment
ecisions thus improving the survival outcomes of PC patients.

Various “omics” technologies (genomics, transcriptomics, pro-
eomics) have been used for biomarker discovery of pancreas
ancer [4–7]. As the downstream complement to the other “omics”,
etabolomics is the comprehensive analysis of small molecule
etabolites produced by normal or abnormal cellular processes.

he metabolome may  be considered, a more accurate representa-
ion of the cellular phenotype at any given time [8,9]. As such, it is
ast gaining ground as a powerful tool to differentiate between the

iseased and healthy states [10–12].

We investigated the differences in the metabolite profiles of nor-
al  and pancreas tumor tissue with a goal of developing prognostic
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biomarkers. For this purpose, we used ultra-performance liquid
chromatography (UPLC) coupled with electrospray ionization mass
spectrometry (ESI-MS) to perform small molecule metabolite pro-
filing of matched normal and pancreatic tumor tissue. The resulting
multivariate data matrix was pre-processed for spectral align-
ment and peak detection, followed by normalization of the data
to the feature intensities of the internal standard as well as to
the total protein concentration. Data mining using supervised
and machine learning methods facilitated the characterization of
metabolic changes in the tumor as compared to the normal tis-
sue. We  report a subset of metabolites which were unequivocally
identified and were found to be significantly de-regulated in the
pancreas tumor tissue type. Further characterization and validation
with large sample size may  help establish their utility as biomarkers
of clinical benefit.

2. Materials and methods

2.1. Reagents and standards

LC/MS-grade acetonitrile (ACN), water and methanol were
purchased from Fisher Scientific (NJ, USA). High purity formic
acid (99%) was purchased from Thermo Scientific (Rockford, IL).
MagNA Lyser green beads were purchased from Roche (Mannheim,

Germany). Debrisoquine, 4-nitrobenzoic acid (4-NBA), 5′-AMP, suc-
cinate, taurine, uric acid, malic acid, uridine, glutathione, 5′-UMP,
NAD, UDP-N-acetyl-d-glucosamine were purchased from Sigma
(USA).

dx.doi.org/10.1016/j.ijms.2011.11.005
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:akc27@georgetown.edu
dx.doi.org/10.1016/j.ijms.2011.11.005
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Table 1
Characteristics of patient population.

RTB# Sex Race Paraffin report diagnosis

07-389 M Not specified Metastatic adenoid cystic carcinoma
08-461a F Caucasian Invasive, moderately differentiated adenocarcinoma
07-298 F Caucasian Moderate to poorly differentiated ductal-type adenocarcinoma
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07-1128 M Caucasian 

07-1158 F Middle Eastern 

a “Normal” tissue found to contain microtumors.

.2. Sample collection

Five pairs of matched normal and tumor tissue samples were
btained from the Tissue and Histopathology Shared Resource
epository (HTSR) of the Lombardi Comprehensive Cancer Center
nder board approved protocols. All samples were de-identified
nd assigned an alternative ID number (RTB#). The pancreatic tis-
ue resections were acquired by HTSR, from Georgetown University
ospital under IRB approval and following guidelines specified
y the NCI’s Best Practices for Biospecimen Resources. Fresh pan-
reatic tissue was frozen in Optimal Cutting Temperature (OCT)
edium immersed in a liquid nitrogen bath. Five micron sections
ere obtained from the tissues and stained with hematoxylin and

osin (H&E) (Supplementary Fig. S1).  Pathology evaluation was  per-
ormed by a board certified practicing pathologist to identify tumor
nd normal areas within all of the tissue blocks (Supplementary
ig. S1).  The tissue samples were uniformly sectioned using a
icrotome (Leica CM3050 cyrostat) and processed for metabolite

xtraction. The clinical details are summarized in Table 1.

.3. Metabolite extraction

For metabolite extraction, 600 �L of 50% chilled methanol con-
aining internal standards (10 �L of debrisoquine (1 mg/mL  in
ater) and 50 �L of 4-NBA (1 mg/mL  in methanol) per 10 mL)
as added to the tissue sections in MagNA Lyser tubes containing

eramic beads. The samples were homogenized using three 30 s
ulses in a Magna Lyser homogenizer (Roche, USA) at 7000 rpm.
he supernatant was transferred to a fresh tube and 350 �L chilled
00% ACN was  added. In addition, 2 �L of the supernatant was  set
side for protein quantification using the Bradford method [13]. The
ubes containing supernatant and ACN were vortexed, incubated on
ce for 15 min  and centrifuged at 13,000 rpm at 4 ◦C for 15 min. The
upernatant was transferred to a fresh tube and dried under vac-
um. The samples were re-suspended in 200 �L of solvent A (98%
ater, 2% ACN) for mass spectrometry analysis.

.4. UPLC–TOFMS profiling

Metabolites extracted from normal and tumor tissue samples
ere analyzed in the same batch with three technical replicates

or each sample. Each sample (5 �L) was injected onto a reverse-
hase 50 mm  × 2.1 mm Acquity 1.7 �m C18 column (Waters Corp.,
ilford, MA)  using an ACQUITY UPLC system online with an

lectrospray quadrupole time-of-flight tandem mass spectrome-
er (ESI-Q-TOF), as has been described [14]. The centroided data
rom UPLC–TOFMS acquired in the positive and negative mode
as pre-processed using MarkerLynx (Waters Corp.) to generate

 data matrix containing feature intensities, mass to charge (m/z)

nd retention time values. These data were normalized to the ion
ntensity of the internal standards (4-nitrobenzoic acid in the nega-
ive mode and debrisoquine in the positive mode) and total protein
oncentration as determined by Bradford assay.
Moderately to poorly differentiated PDAC
Infiltrating moderately differentiated ductal-type adenocarcinoma

2.5. Multivariate data analysis

The normalized data were pareto scaled [15] and analyzed first
by principal component analysis (PCA) followed by orthogonal pro-
jections to latent structures (OPLS) [16] using SIMCA-P+ software
(Umetrics, Kinnelon, NJ). The candidate markers were selected by
examining the OPLS-S plot which is a measure of ion confidence.
The ions which were distant from the point of origin in the upper
right and lower left quadrant were chosen for further investiga-
tion. We  also used random forest clustering [17] to interrogate the
top 50 features with significant alterations in the tumor tissue as
compared to the control. The candidate markers were searched
against the Madison-Qingdao Metabolomic Consortium Database
(MMCD) and the Human Metabolome Database (HMDB) [18,19]
to find compounds that corresponded to the accurate monoiso-
topic mass measurements detected using UPLC–TOFMS analysis.
The mass tolerance was kept at 5 parts per million to minimize
false positive identifications.

2.6. Validation and targeted quantitation of metabolites

A panel of metabolites identified as having significantly altered
levels in the tumor as compared to the normal tissue were vali-
dated by matching the fragmentation pattern of the parent ion to
that of the standard metabolite using tandem mass spectrometry
(UPLC–TOFMS/MS) and also by comparing the retention time under
the same chromatographic conditions.

The quantitation was  done using UPLC–TOFMS and the QuanL-
ynx software (Waters Corp.). Briefly, all standards were analyzed
in aqueous phase containing internal standards, for concentrations
ranging from 10 to 50 �M in triplicates. These were used to cal-
culate standard curves. The metabolite concentration derived from
normalizing the peak intensity to that of the internal standard was
then extrapolated.

3. Results and discussion

3.1. Metabolomic analysis of pancreas tissue

Metabolomic profiling of five matched pairs of normal and
tumor pancreas tissue was performed using UPLC–TOFMS analy-
sis which yielded a data matrix containing 5000 features in the
positive and 2300 features in the negative mode. In order to obtain
a global visualization of the metabolome for the two study groups,
these data were plotted on a two dimensional scale as a function of
retention time and molecular weight which yielded a peak pattern
that was distinct for samples derived from normal as compared to
the pancreas tumor tissue (Fig. 1). The highlighted areas in Panel
A (tumor) and Panel B (normal) show differential intensity and
cluster pattern of features across the mass range of 100–700 Da
in a chromatographic time scale of 8.5 min. The raw data were
pre-processed using the peak detection algorithm (Markerlynx,

Waters Corporation) and normalized to total protein concentration
to account for sampling inconsistency as well as to the ion intensi-
ties of the internal standard for error minimization resulting from
run to run variation. The normalized data were analyzed using two
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Fig. 1. Two  dimensional plot of UPLC–ESI-MS data. The raw data acquired using the UPLC–ESI-MS was  plotted as a function of retention time (retention time in minutes on
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he  X-axis) and mass to charge ratio (m/z) of the features (in Daltons, on the Y-axis)
ormal  tissue extracts (Panel B). The equivalent areas in the tumor and normal sam
anels.

ndependent computational methods to decipher metabolomic dif-
erences between the pancreas tumor and normal tissue. Initially,
e performed principle component analysis (PCA) using SIMCA-P+

oftware (Umetrics, NJ), which did not yield a clear separation of
he two groups. However, OPLS analysis resulted in an unambigu-
us separation in the scores plot. The resulting S-plot is defined
s a biomarker visualization plot of features showing significant
lterations in the two groups under study which are then selected
or further characterization (Fig. 2A). The mean distance from the
oint of origin in a S-plot, is indicative of inter-class separation.
he features that are elevated in the tumor tissue are displayed in
he upper right quadrant while those which are downregulated are
isplayed in the lower left quadrant. These candidate markers were
elected for identification via mass based database search.

The data set was also analyzed using the machine learning
lgorithm Random forests (RF). The RF algorithm is an ensemble
lassifier that consists of multiple decision trees that are used to
uild accurate classifiers while avoiding over-fitting of the dataset.
he RF was run in the R software environment. The accuracy plot for
he top 50 features interrogated, resulted in a classification model

ith 99% accuracy (Fig. 2B) which indicates that a feature based

lass separation between the two groups (normal and tumor) was
tatistically significant. The accuracy plot shows a clear interclass
eparation, that is between the tumor and normal (Fig. 2B, X-axis)
nerate a two  dimensional map  of the distinct peak pattern in tumor (Panel A) and
at differed in feature pattern and intensity have been highlighted with color coded

as well as a significant intra-class clustering (Fig. 2B, Y-axis), thus
reflecting that biological replicates of each class clustered together
with high degree of accuracy. The relative change for the top 50
features was plotted as a heat map  (Fig. 2C), where each row repre-
sented a unique feature with a characteristic mass to charge ratio
(m/z) and retention time. Interestingly, the algorithm was able to
pick one outlier, which was excluded in further analysis, wherein a
normal tissue sample was  predicted to contain some regions of the
tumor during surgical resection (Table 1).

We found a fair overlap between biomarkers found with the
OPLS and Random Forest analyses which reinforced the signifi-
cance of these putative markers. For instance, taurine, malic acid
and UDP-N-acetyl-d-glucosamine in the negative mode as well as
unidentified features with m/z values of 523.9791 and 287.2436
in the positive mode, were determined by both methods to be
deregulated in the pancreas tumor versus normal tissue. Over-
all, the negative mode data set, contained more reproducible,
consistent and authentic features suitable for further scrutiny as
viable biomarkers of PDAC. A similar observation regarding nega-
tive mode UPLC–TOFMS metabolomics data was  made by Tyburski

et al. while investigating urinary metabolomic markers of radiation
exposure [20].

Of the total number of significantly altered features selected
from SIMCA-P+ and RF analysis, approximately twenty percent
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Fig. 2. Multivariate analysis of the UPLC–TOFMS data. (a) OPLS loadings S-plot comparing features from pancreatic tumor tissue extracts with those from the matched normal
t  first d
t p  visu
o h row
r

f
M
M
a
m
s

3
b

w
d
e

T
C

issue; (b) accuracy plot for the top 50 ions interrogated using Random Forests, the
he  intra-class separation while accuracy reflects statistical significance; (c) heat ma
f  matched normal and pancreatic tumor tissue extracts run in quadruplicate. Eac
atio  and retention time value.

ound a match through database search using Madison-Qingdao
etabolomic Consortium Database (MMCD) and the Human
etabolome Database (HMDB). The selected features from the

nalyses that were unambiguously identified with respect to their
ass and retention times as well as unidentified features with a

ignificant fold change are listed in Table 2.

.2. Validation and relative quantitation of the candidate
iomarkers
Based on the commercial availability of standard compounds,
e selected a panel of fourteen candidate biomarkers for vali-
ation using tandem mass spectrometry. Authentic standards of
ach compound at 50 �M in 2% acetonitrile in water were used

able 2
andidate biomarkers of pancreatic ductal adenocarcinoma.

Metabolite name Kegg/PubChem ID m/z 

Succinate C00042 117.
Taurine C00245 124.
Malic  acid C00711 133.
Uridine C00299 243.
Glutathione C00051 306.
UDP-N-acetyl-d-glucosamine C00043 606.
Nicotinamide adenine dinucleotide CID 5288979 662.
5′-UMP C01368 323.
AMP  C00020 346.
Unknown C10704 459.
Unknown CID 6858181 523.
Unknown – 366.
Unknown C03413 287.
Unknown C00300 132.
Unknown CID 338209 188.
Unknown CID 165879 236.
imension depicts the interclass separation while the second dimension illustrates
alization of ion rankings of top fifty features, comparing relative levels in four pairs

 on the heat map  represents a unique feature with a characteristic mass to charge

to acquire MS/MS  fragmentation spectra resulting in character-
istic daughter ions. The fragmentation patterns and retention
times for nine features listed in Table 3, were found to be
consistent between the standard and samples from the pancre-
atic tissue extracts. A representative fragmentation spectrum for
UDP-N-acetyl-d-glucosamine is illustrated in Fig. 3, while the spec-
tra for other validated markers is illustrated in Supplementary
Figs. S2A–H.  The major collision induced dissociation (CID)
fragments as well as the TOFMS mass accuracy for each vali-
dated metabolite are listed in Table 3. These metabolites were

then quantified for their relative levels, and the ratios were
found to be consistent with the abundance measures predicted
by the data analysis methods (Fig. 4) in the discovery mode
experiments.

(mass/charge) RT (min) Fold change (tumor/normal)

0189 (NEG) 0.64 0.3
0069 (NEG) 0.29 1.6
0137 (NEG) 0.36 0.3
0615 (NEG) 0.67 0.1
0761 (NEG) 0.48 0.6
0748 (NEG) 0.33 0.3
1015 (NEG) 0.57 0.08
0277 (NEG) 0.37 0.4
055 (NEG) 0.40 0.5
2029 (NEG) 5.93 3.52
9791 (POS) 0.29 73.1
1397 (POS) 0.40 14.1
2436 (POS) 0.36 87.9
0773 (POS) 0.32 4.4
1283 (POS) 0.39 2.0
9944 (POS) 0.28 4.3
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Table 3
Identification of significantly altered metabolites in pancreas tumor tissue using tandem mass spectrometry.

Molecule ID Theoretical mass (Da) (−) Observed mass (Da) (−) ppm error Major CID
fragments

Succinate 117.0188 117.0189 0.8 99.922
73.0332

Taurine 124.0068 124.0069 0.8 106.984
79.9607

Malic  acid 133.0137 133.0137 0.0 115.006
71.0174

Uridine 243.0614 243.0615 0.4 200.065
152.042
110.029

Glutathione 306.076 306.0761 0.3 272.105
128.043
143.055

UDP-N-acetyl-d-glucosamine 606.0737 606.0748 1.8 385.005
158.932
272.971

NAD  662.1013 662.1015 0.3 540.094
346.081
426.047

UMP  323.028 323.0277 0.9 211.017
96.974
78.9621
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AMP 346.0553 

.3. Biological significance of candidate biomarkers

Functional pathway analysis was performed by uploading the
omparative metabolomics dataset into the ingenuity pathway
nalysis tool in order to map  the metabolites to biological path-
ays. The network analysis revealed one major network, with

nrichment of seven focus metabolites involved in the regulation
f free radical scavenging, lipid metabolism and small molecule

iochemistry (Fig. 5). The biological significance of interaction
f metabolites like taurine and the MAPKAPK5 and the ERK1/2
ignaling pathways remains to be elucidated. The functional path-
ay analysis showed a predominant representation of molecules

ig. 3. Determination of the chemical structure of metabolites in pancreatic tumor tissue
on  with m/z 606.0748 from pancreatic tissue extracts. The bottom panel shows the fragm
346.055 0.8 134.052
96.9729
78.961

involved in lipid metabolism, free radical scavenging and molecular
transport (Fig. 6).

The downregulation of citric acid cycle intermediates succinate
and malate may  have an overall impact on the energy metabolism
of the cell, while lower levels of uridine, 5′-uridine monophos-
phate (5′-UMP) and 5′-adenosine monophospahte (5′-AMP) could
reflect rapid turnover of these nucleotides in the tumor tissue. We
also observed a down-regulation of the powerful antioxidant glu-

tathione in the pancreatic tumor tissue. A similar decrease in the
serum levels of glutathione has been observed in breast carcinoma
with a simultaneous increase in lipid peroxidation in plasma, which
becomes more pronounced during aging of the patients [21]. There

s by tandem mass spectrometry. Top panel shows the MS/MS  fragmentation of the
entation for standard UDP-N-acetyl-d-glucosamine.
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Fig. 4. Determination of relative quantitation of metabolites. Putative tissue biomarkers of pancreatic cancer were quantified by UPLC–TOFMS and QuanLynx software (see
Section  2).

Fig. 5. Network analysis of the altered metabolites in pancreas tumor tissues. Molecular network modules for comparative metabolomics of matched pancreas tumor and
normal  tissue, illustrating a distinct difference in expression of participating metabolites in different cellular processes namely free radical scavenging, small molecule
biochemistry and lipid metabolism. In each network module, a solid line indicates direct interaction; a dashed line indicates indirect interaction; a line without arrowhead
indicates binding; an arrow from molecule A to molecule B indicates A acts on B. Node shapes are indicative: triangle, kinase; diamond, enzyme; hexagon, translation
regulator; trapezoid, transporter; oval (horizontal), transcription regulator; oval (vertical), transmembrane receptor. Metabolites that are upregulated are marked in red
while  those that are downregulated are marked in green. In this study since the relative fold change was used as expression value type hence a greater intensity of green and
red  represents higher degree of down-regulation and up-regulation respectively.
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Fig. 6. Top functional pathways associated with significantly altered metabolites in pancreas tumor as compared to matched normal tissue. The ratio is calculated as the
number  of molecules in a given pathway that meet the cutoff criteria (0.05), divided by total number of molecules that make up that pathway. The ratio reflects the percentage
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f  genes in a pathway that were also found in the uploaded list of significantly alt
athway and the uploaded dataset. The significance gives the confidence of assoc
robably associated with the data and a large portion of the pathway may  be involv

as an increase in the levels of amino acid taurine in the pancre-
tic tumor tissue as compared to the normal controls. Taurine is a
ajor constituent of bile and has been reported to be significantly

levated in urinary bladder cancer [22]. Metabolomic profiling of
lasma of pancreas cancer patients by Urayama et al. showed an
levation of taurocholic acid and tauroursodeoxycholic acid which
re also constituents of bile [23].

Nicotinamide adenine dinucleotide (NAD) is an electron carrier
nd the NAD/NADH ratio is critical towards maintaining a redox
quilibrium of a cell, a direct indicator of the metabolic health of the
ell or tissue type [24]. Taken together, the alteration in the relative
evels of these metabolites allow us to understand the underlying
iochemical changes in pancreas tumor tissue in comparison with
atched normal tissue, as well as to gain insights into the molecular

asis of the progression of pancreatic carcinogenesis.

. Conclusions

Mass spectrometry based small molecule profiling in conjunc-
ion with multivariate data analysis approaches is a powerful tool
or interrogations of the tumor metabolome and complements
he goals of personalized medicine. However, metabolomic pro-
ling of samples with high complexity and biological variability
resents enormous analytical challenges with respect to resolution
nd detection of chemically diverse small molecule metabolites
nd downstream analysis of the high dimensional data that is
enerated. In addition, unambiguous identification of metabo-
ites presents another bottleneck in the field of LC–MS based

etabolite biomarker discovery. It is expected that availability
f databases with more comprehensive annotations of endoge-
ous human metabolites will provide a strong impetus to research
ndeavors in this field.

Availability of reliable biomarkers for early detection of pan-
reas cancer as well as disease progression poses a major challenge
owards improving disease outcomes. To our knowledge this is a
rst reported study involving UPLC–TOFMS based metabolomic
rofiling of pancreas tissue extracts to determine candidate

iomarkers for differentiating matched tumor and normal tissue.
e have also performed multivariate data analysis, metabolite

dentification through accurate mass based database search fol-
owed by validation using tandem mass spectrometry, relative
etabolites. The significance (p-value) looks at the association between a specific
. Therefore, if a pathway has a high ratio and a very low p-value, the pathway is

 affected.

quantitation and functional pathway analysis for the candidate
biomarkers.

Our results show feasibility of such an approach for developing
prognostic biomarkers with potential clinical utility. The pancreas
tumor tissue offers a rich matrix for discovering biomarkers with
appreciable specificity and sensitivity. We  have developed a panel
of candidate small molecule metabolite markers which show a
significant deregulation in the pancreas tumor as compared to
the matched normal tissue. Further validation using large sample
cohorts is needed, to test their efficacy and performance followed
by targeted validation in the body fluids to develop minimally inva-
sive clinical assays for diagnostic and prognostic purposes.
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